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Extension of the pole decomposition for the multidimensional Burgers equation
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It is shown that the generalizations to more than one space dimension of the pole decomposition for the
Burgers equation with finite viscosity and no force are of the form=—2»V In P, where theP’s are
explicitly known algebraidor trigopnometri¢ polynomials in the space variables with polynomiai expo-
nentia) dependence on time. Such solutions have pole singularities on the complex algebraic varieties.
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[. INTRODUCTION always are, by virtue of the main theorem of algebra. How-
ever, the Burgers equatidf) is integrable in arbitrary num-
We are interested in the Burgers equatioiRlh[1] ber of dimensions. This is obvious, because the Cole-Hopf
transformation(2), which maps(1) to (3), is valid in R" for
UHu-Vu=pV2, u=-Vd, 1 an arbitrary naturain. Our goal here is to describe two

classes of finite-dimensional exact solutions of the multidi-
mensional Burgers equatidft), which are extensions of the
“pole decomposition” of the(1+1)-dimensional Burgers
equation[9,10].

The pole decomposition is a property of PDEsintegro-
PDEs to have finite-dimensional solutions, whose degrees
of freedom are movable singularitiggoles in the complex

whereu, is the partial derivative ofi with respect to time
andv is viscosity (#>>0). This equation is the simplest evo-
lutionary dissipative equation, which is minimallguadrati-
cally) nonlinear and enjoys translational and Galilean invari-
ance. This simplicity and generality of the E@) explains
its applicability for seemingly different processes occurring . ¢ .
in a wide range of physical phenomena. Although originallypl.ane' Most, if not all, completely integrable models enjoy
this equation appeared as a model for Navier-Stokes turbdh's_PrOP.e”W]- The most notable examples qf pole decom-
lence[1], it is mostly used today in cosmolodg], polymer position in integrable systems can be found in REQs_ll—
physics[3], and nonlinear acoustid4]. (See Ref[5] for a _13]._The case_of thé1+1)-d|men3|o_r_1al Burgers e_qua}‘tlcﬁm)
review) Also this equation is very useful as a testing ground'S discussed in Ref§14,15. Specifically, it admits “pole-
for numerical schemes in hydrodynam[é&d. These features decomposed” solutions in the form
make the Burgers equation important and attractive for
physicists. N 1
From the mathematical point of view the Burgers equa- u(t,x)= —21/2 —,
tion is also remarkable, for it is completely integralpi, =1 x=2(0)
i.e., reducible to dinear problem after equivalent transfor- ) ) i )
mation. This follows directly from the Cole-Hopf transfor- Where the poles constitute &kdimensional dynamical sys-
mation[8]: tem:

4

u=-2vV1Iné, 2) dz NCog

——=—2v .
dt K71 21— 2

&)
which maps(1) into the linear heat equation for the scalar

field 6, namely, The pole decomposition for E¢1) corresponds to solu-

tions of Eq.(3) which are polynomial in the space variable.
6,=vV?20, (3) Note that existence of a pole decomposition for a nonlinear
system does not imply its integrability. Indeed, there are
from which the solution to the Burgers equatiti) can be known instances of nonlinearonintegrablemodels, which
obtained explicitly by quadrature. also possess a pole decomposition. They include the two-
With a few exceptions, completely integrable partial dif- dimensional Euler equation for ideal hydrodynamid$],
ferential equation$PDES are two dimensionalone dimen- some models in plasma turbuler{d&’], some versions of the
sion for time and one dimension for spa¢&]. There is a  Sivashinsky equation for a flame propagatid8,19, and
probable underlying mathematical reason, which hinders inrelated combustion systerfi0]. Both integrable and nonin-
tegrability in more than one spatial dimension: roughlytegrable systems possessing a pole decomposition are of in-
speaking, it is related to the fact that polynomials with re-terest to physicists and mathematicians, for the pole dynam-
spect to more than one variable generally are not factorizablies reveals important physical trends and hidden mathe-
into nontrivial factors, while in the case of one variable theymatical structure underlying the model.
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It should also be mentioned that the Burgers equation is Using Eq.(2), we find that our polynomial solutions gen-
dissipative, unlike almost all integrable systems, which areerate the following rational solutions to the Burgers equation:
Hamiltonian[7]. The phase volume of closed dissipative sys-
tems shrinks with time, so that only a few degrees of free-

dom are really relevant in the long-time asymptotics, most of % Dk ﬁ ki
the initially existing degrees of freedom being eventually “o ak(t) pLL X|
suppressed. Because a pole decomposition is an exact finite- Up(t,X)=—2v—m = , (9)
dimensional reduction of the system with an infinite number X 2 a (t)H xKki
of degrees of freedom, this explains why such a decomposi- P T

tion is especially instructive for dissipative models, such as

the Burgers equatiol) [10], flame propagatio18—-20,  whereu, is thepth component of the vector field Another

and viscous fingeringthe Saffman-Taylor problef21]. closely related class of solutions involves trigonometric
Since multidimensional integrability is a far more difficult polynomials

subject than the (% 1)-dimensional case, it is tempting to
extend to higher-dimensions physical ideas adopted from in- " )
teracting poles, by replacing poles by strings or by more )
general complex varietied priori, however, it seems im- P(t,x)=ReK2:O CK(t)Iﬂl el (10
possible to extend Eq5) to non-pointlike objects, while -
keeping a finite number of degrees of freedom. However, we . . :
shall see that in higher dimensions there are still polynomiaY\’Ith the sameK andM as in Eq.(8). The time dependence
(algebraic and trigonometiisolutions to Eq(3), which can ~ ©f Ck IS now given by
be obtained explicitly. Observe that polynomials are factor-
izable in one dimension, whereas this is generally not the n
case in higher dimensions; the zeros of polynomials are then ck(t) =C2ex;{ — y( E kf)t
located on algebraic complex varieties which are generally =1
irreducible [22].

Here, we will show that it is quite elementary to constructBy Eg. (2) this generates the following solutions to the Bur-
polynomial-based solutions to the multidimensional Burgersgers equation:
equation(1) with singularities on such irreducible varieties.

. (11

M n
Il. SOLUTIONS GENERATED BY POLYNOMIALS ImS c(tk [T e
p
. . . K=0 |=
We are looking for polynomial solutions to the heat equa- Up(t,X)=2v T - ! ) (12
tion Re>, c(D)]] ek
K=0 I=1
M n
k .
P(t,x)= |<§—:o aK(t)ll:[l X' (6) Thus, we have shown that the Burgers equatibrin R"

possesses exact solutions with a finite number of time-
dependent parameters generated by the algebraic and trigo-
where  x=(x1.%p, ... Xn),  K=(kpk, ... 'kn”)' O hometric polynomial solutions of the heat equatioriih
=(00,...,00M=(m;,my, ... .my), and|M| ==} my is We observe that such solutions, contrary to the one-
the.degree of thg polynomlal. It is technically convenient t04imensional case, cannot, in general, be decomposed into a
define new coefficients sum of separate simpler solutions. Indeed, this would corre-
spond to havingt all-timespolynomial solutions of the heat
n equation which are factorized. Even if the initial polynomial
be=ax]] k! (7) s factorized, the time evolution will, in general, destroy the
=1 factorization. Recently, special solutions possessing the all-
. - time factorization property were found by Leshchiner and
The initial (t=0) values of these coefficients are denoted byyne of the authoréM.M-W.). We do not yet know how broad

the superscript zero. o __is the class of such solutions.
Itis easily checked by substitution into the heat equation A final remark concerns integrability and explicit charac-
that the time dependence of the’s is terization of singularities. Knowing explicitly the coefficients

of the polynomial solution of the heat equation does not
imply that we can explicitly describe the algebraic variety on

(Vt)PlJer*'“*Pn N . . . . . .
(8) which the polynomial vanishes. Even in one dimension, if

M/
bK(t):FZO b2+2p(

P1tpat---+py)!’ we have a pole decomposition with more than four poles, we
conjecture that Galois theory implies the following: given
where M’ =(mz,m;, ... ,m}), andm/ is eitherm; or m, the initial position, in general, it is not possible to find the

—1 depending on whethen,—k; in Eqg. (8) is even or odd. positions for all times by radicals.

067301-2



BRIEF REPORTS PHYSICAL REVIEW B7, 067301 (2003

ACKNOWLEDGMENTS “Unstable Fluid-Fluid Interfaces” at LANL, by the Euro-

We gratefully acknowledge helpful discussions with F.Pean Union under Contract No. HPRN-CT-2000-00162,
Calogero, M. Kruskal, and D. Leshchiner. This work wasand by the Indo-French Centre for the Promotion of
supported by the the LDRD Project No. 2002006ERAdvanced ResearciGrant No. IFCPAR 24042

[1] J. M. Burgers;The Nonlinear Diffusion EquatiofReidel, Dor- ~ [10] U. Frisch and R. Morf, Phys. Rev. 23, 2673(198)).

drecht, 1974 [11] M. D. Kruskal, Nonlinear Wave Motionedited by A. C. New-

[2] Y. B. Zel'dovich, Astron. Astrophys5, 84 (1970; P. J. E. ell (American Mathematical Society, Providence, 194 61.
PeeblesPrinciples of Physical Cosmologfrinceton Univer-  [12] F. Calogero, Lett. Nuovo Cimentb3, 411 (1975.
sity Press, Princeton, 1993 [13] J. Moser, Adv. Math16, 197 (1975.

[3] M. Kardar and Y.-C. Zhang, Phys. Rev. Le48, 2087(1987); [14] Y. Kimura, in Proceedings of the NEEDS '94dited by V.
J. P. Bouchaud, M. Mezard, and G. Parisi, Phys. Re®2E Makhan’kov (World Scientific, Singapore, 1995
3656(1995. [15] D. Senouf, SIAM J. Math. Phy8, 1457(1997); D. Senouf,

[4] S. N. Gurbatov, A. N. Malakhov, and A. I. Saichépn-linear ibid. 28, 1490(1997.

Random Waves and Turbulence in Nondispersive Media[16] A. Sommerfeld Mechanics of Deformable Bodi¢Academic,
Waves, Rays, Particles(Manchester University Press, New York, 1964, Chap. 4.
Manchester, 1991 [17] Y. C. Lee and H. H. Chen, Phys. Scr.,2T 41 (1982.

[5] U. Frisch and J. Bec, ilNew Trends in Turbulengéroceed- [18] O. Thual, U. Frisch, and M. Henon, J. Phy&, 1485(1985.
ings of the Les Houches Summer School, edited by M. Le-[19] O. Kupervasser, Z. Olami, and |. Procaccia, Phys. Rev. Lett.

sieur, A. Yaglom, and F. DavidSpringer, New York, 2000 76, 146(1996.
pp. 341-383. [20] G. Joulin,Coherent Structures in Complex Systeedited by

[6] U. Frisch,Turbulence: The Legacy of A. N. Kolmogol@am- D. Reguera, L. L. Bonilla, and J. M. Rubi, Lecture Notes in
bridge University Press, Cambridge, 1995 Physics Vol. 567 Springer-Verlag, Berlin, 2001 p. 127.

[7] M. J. Ablowitz and H. SegurSolitons and Inverse Scattering [21] B. Shraiman and D. Bensimon, Phys. Re\3@ 2840(1984);
Transform(SIAM, Philadelphia, 198t A. C. Newell, Solitons D. Bensimon and P. Pelciaid. 33, 4477(1986; S. D. Howi-
in Mathematics and PhysidSIAM, Philadelphia, 198b son, J. Fluid Mech167, 439(1986; M. B. Mineev-Weinstein

[8] E. Hopf, Commun. Pure Appl. Mati, 201(1950; J. D. Cole, and S. P. Dawson, Phys. Rev.58, R24(1994.

Q. Appl. Math.9, 225(1952). [22] I. R. ShafarevichAlgebraic Geometry |: Algebraic Curves,

[9] D. V. Choodnovsky and G. V. Choodnovsky, Nuovo Cimento Algebraic Manifold and Scheme&Springer-Verlag, Berlin,
Soc. Ital. Fis., B40B, 339(1977. 1994.

067301-3



