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Extension of the pole decomposition for the multidimensional Burgers equation
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It is shown that the generalizations to more than one space dimension of the pole decomposition for the
Burgers equation with finite viscosityn and no force are of the formu522n“ ln P, where theP’s are
explicitly known algebraic~or trigonometric! polynomials in the space variables with polynomial~or expo-
nential! dependence on time. Such solutions have pole singularities on the complex algebraic varieties.
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I. INTRODUCTION

We are interested in the Burgers equation inRn @1#

ut1u•“u5n¹2u, u52“F, ~1!

whereut is the partial derivative ofu with respect to timet
andn is viscosity (n.0). This equation is the simplest evo
lutionary dissipative equation, which is minimally~quadrati-
cally! nonlinear and enjoys translational and Galilean inva
ance. This simplicity and generality of the Eq.~1! explains
its applicability for seemingly different processes occurri
in a wide range of physical phenomena. Although origina
this equation appeared as a model for Navier-Stokes tu
lence@1#, it is mostly used today in cosmology@2#, polymer
physics@3#, and nonlinear acoustics@4#. ~See Ref.@5# for a
review.! Also this equation is very useful as a testing grou
for numerical schemes in hydrodynamics@6#. These features
make the Burgers equation important and attractive
physicists.

From the mathematical point of view the Burgers equ
tion is also remarkable, for it is completely integrable@7#,
i.e., reducible to alinear problem after equivalent transfor
mation. This follows directly from the Cole-Hopf transfo
mation @8#:

u522n“ ln u, ~2!

which maps~1! into the linear heat equation for the scal
field u, namely,

u t5n¹2u, ~3!

from which the solution to the Burgers equation~1! can be
obtained explicitly by quadrature.

With a few exceptions, completely integrable partial d
ferential equations~PDEs! are two dimensional~one dimen-
sion for time and one dimension for space! @7#. There is a
probable underlying mathematical reason, which hinders
tegrability in more than one spatial dimension: rough
speaking, it is related to the fact that polynomials with
spect to more than one variable generally are not factoriz
into nontrivial factors, while in the case of one variable th
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always are, by virtue of the main theorem of algebra. Ho
ever, the Burgers equation~1! is integrable in arbitrary num-
ber of dimensions. This is obvious, because the Cole-H
transformation~2!, which maps~1! to ~3!, is valid in Rn for
an arbitrary naturaln. Our goal here is to describe tw
classes of finite-dimensional exact solutions of the multi
mensional Burgers equation~1!, which are extensions of the
‘‘pole decomposition’’ of the ~111!-dimensional Burgers
equation@9,10#.

The pole decomposition is a property of PDEs~or integro-
PDEs! to have finite-dimensional solutions, whose degre
of freedom are movable singularities~poles! in the complex
plane. Most, if not all, completely integrable models enj
this property@7#. The most notable examples of pole deco
position in integrable systems can be found in Refs.@9,11–
13#. The case of the~111!-dimensional Burgers equation~1!
is discussed in Refs.@14,15#. Specifically, it admits ‘‘pole-
decomposed’’ solutions in the form

u~ t,x!522n(
k51

N
1

x2zk~ t !
, ~4!

where the poles constitute anN-dimensional dynamical sys
tem:

dzl

dt
522n(

kÞ l

N
1

zl2zk
. ~5!

The pole decomposition for Eq.~1! corresponds to solu
tions of Eq.~3! which are polynomial in the space variabl
Note that existence of a pole decomposition for a nonlin
system does not imply its integrability. Indeed, there a
known instances of nonlinearnonintegrablemodels, which
also possess a pole decomposition. They include the t
dimensional Euler equation for ideal hydrodynamics@16#,
some models in plasma turbulence@17#, some versions of the
Sivashinsky equation for a flame propagation@18,19#, and
related combustion systems@20#. Both integrable and nonin
tegrable systems possessing a pole decomposition are o
terest to physicists and mathematicians, for the pole dyn
ics reveals important physical trends and hidden mat
matical structure underlying the model.
©2003 The American Physical Society01-1



n
ar
s

ee
t o
lly
n
e

os
a

lt
o
i

or
-

w
ia

or
th
he
al

c
er
.

a

to

b

io

-
on:

ric

r-

e-
rigo-

ne-
to a

rre-
t
al
he
all-
nd

c-
ts
ot

on
, if
we
n
e

BRIEF REPORTS PHYSICAL REVIEW E67, 067301 ~2003!
It should also be mentioned that the Burgers equatio
dissipative, unlike almost all integrable systems, which
Hamiltonian@7#. The phase volume of closed dissipative sy
tems shrinks with time, so that only a few degrees of fr
dom are really relevant in the long-time asymptotics, mos
the initially existing degrees of freedom being eventua
suppressed. Because a pole decomposition is an exact fi
dimensional reduction of the system with an infinite numb
of degrees of freedom, this explains why such a decomp
tion is especially instructive for dissipative models, such
the Burgers equation~1! @10#, flame propagation@18–20#,
and viscous fingering~the Saffman-Taylor problem! @21#.

Since multidimensional integrability is a far more difficu
subject than the (111)-dimensional case, it is tempting t
extend to higher-dimensions physical ideas adopted from
teracting poles, by replacing poles by strings or by m
general complex varieties.A priori, however, it seems im
possible to extend Eq.~5! to non-pointlike objects, while
keeping a finite number of degrees of freedom. However,
shall see that in higher dimensions there are still polynom
~algebraic and trigonometric! solutions to Eq.~3!, which can
be obtained explicitly. Observe that polynomials are fact
izable in one dimension, whereas this is generally not
case in higher dimensions; the zeros of polynomials are t
located on algebraic complex varieties which are gener
irreducible @22#.

Here, we will show that it is quite elementary to constru
polynomial-based solutions to the multidimensional Burg
equation~1! with singularities on such irreducible varieties

II. SOLUTIONS GENERATED BY POLYNOMIALS

We are looking for polynomial solutions to the heat equ
tion

P~ t,x!5 (
K50

M

aK~ t !)
l 51

n

xl
kl , ~6!

where x5(x1 ,x2 , . . . ,xn), K5(k1 ,k2 , . . . ,kn), 0
5(0,0, . . . ,0),M5(m1 ,m2 , . . . ,mn), anduM u5(k51

n mk is
the degree of the polynomial. It is technically convenient
define new coefficients

bK5aK)
l 51

n

kl !. ~7!

The initial (t50) values of these coefficients are denoted
the superscript zero.

It is easily checked by substitution into the heat equat
that the time dependence of thebK ’s is

bK~ t !5 (
P50

M8

bK12P
0 ~nt !p11p21•••1pn

~p11p21•••1pn!!
, ~8!

where M 85(m18 ,m28 , . . . ,mn8), and ml8 is either ml or ml

21 depending on whetherml2kl in Eq. ~8! is even or odd.
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Using Eq.~2!, we find that our polynomial solutions gen
erate the following rational solutions to the Burgers equati

up~ t,x!522n

(
K50

M

aK~ t !kp)
l 51

n

xl
kl

xp (
K50

M

aK~ t !)
l 51

n

xl
kl

, ~9!

whereup is thepth component of the vector fieldu. Another
closely related class of solutions involves trigonomet
polynomials

P~ t,x!5Re(
K50

M

cK~ t !)
l 51

n

eiklxl , ~10!

with the sameK andM as in Eq.~8!. The time dependence
of cK is now given by

cK~ t !5cK
0 expF2nS (

l 51

n

kl
2D tG . ~11!

By Eq. ~2! this generates the following solutions to the Bu
gers equation:

up~ t,x!52n

Im(
K50

M

cK~ t !kp)
l 51

n

eiklxl

Re(
K50

M

cK~ t !)
l 51

n

eiklxl

. ~12!

Thus, we have shown that the Burgers equation~1! in Rn

possesses exact solutions with a finite number of tim
dependent parameters generated by the algebraic and t
nometric polynomial solutions of the heat equation inRn.

We observe that such solutions, contrary to the o
dimensional case, cannot, in general, be decomposed in
sum of separate simpler solutions. Indeed, this would co
spond to havingat all-timespolynomial solutions of the hea
equation which are factorized. Even if the initial polynomi
is factorized, the time evolution will, in general, destroy t
factorization. Recently, special solutions possessing the
time factorization property were found by Leshchiner a
one of the authors~M.M-W.!. We do not yet know how broad
is the class of such solutions.

A final remark concerns integrability and explicit chara
terization of singularities. Knowing explicitly the coefficien
of the polynomial solution of the heat equation does n
imply that we can explicitly describe the algebraic variety
which the polynomial vanishes. Even in one dimension
we have a pole decomposition with more than four poles,
conjecture that Galois theory implies the following: give
the initial position, in general, it is not possible to find th
positions for all times by radicals.
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